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Liquid-metal and dense plasma resistivities are calculated for some transition metals and for Al using the
Ziman theory together with the self-consistent average atomINFERNO code. The hypernetted-chain equation is
used for calculating the structure factors when no experimental data are available. Attempts are made to
improve upon previous calculations by including more accurate electron densities of states as well as the
second and third order terms in the multiple scattering expansion of theT matrix. Calculated resistivities with
the exception of low density Cu plasma are up to a factor of 4 higher than the experiment for transition metals
and between three to four times smaller for Al liquid metal and plasma. The results of the model used in this
paper do not seem to agree with the recent experimental data for Cu at a density of the order of a gram and
temperatures of several eV as recently obtained by DeSilva and Kunze@Phys. Rev. E49, 4448 ~1994!#.
@S1063-651X~96!00207-3#

PACS number~s!: 51.50.1v, 52.20.Fs

I. INTRODUCTION

Extensive and systematic calculations of plasma and
liquid-metal resistivities were recently carried out by Rinker
@1# using the extended Ziman formula. This author, who also
analyzed the derivation of the formula, pointed out that sev-
eral approximations made in these calculations could be im-
proved upon. Among these we cite the use of more accurate
electron densities of states and multiple scattering effects.
Lee and More@2# also calculated plasma resistivities, cover-
ing a wide range of density and temperature. Another recent
development is the experimental work of DeSilva and Kunze
who measured the conductivities of dense Cu plasmas@3#.

In this paper three major topics are addressed.~a! In Sec.
II, liquid-metal resistivities of some transition metals are cal-
culated from the Ziman theory using the self-consistent av-
erage atomINFERNO code @4# model, the extended Ziman
theory was derived by Evans, Greenwood, and Lloyd@5#. An
attempt to improve the calculation is made by using more
realistic electron densities of states thereby improving the
accuracy of the chemical potential and thus also of the num-
ber of conducting electrons. In addition comparisons were
also made to recent high temperature liquid metal resistivity
data for Cu and Ni @6,7#; here use is made of the
hypernetted-chain~HNC! equation@8# for calculating the ion
structure factor.~b! The effect of the second and third order
terms of theT matrix expansion of the multiple scattering
series on the resistivity of liquid-metal Cu is evaluated and
described in Sec. III.~c! The resistivity of Cu plasma as a
function of temperature was studied by means of the Ziman
theory. It was found that for the experimental conditions in
Ref. @3# the mean free path~mfp! obtained on the basis of the
Ziman theory is smaller than the interparticle distance. Alu-
minum plasma were also studied and the results of calcula-
tions using the Ziman theory were compared to recent ex-
perimental data@9#.

The basic motivation for the present research is to attempt
to ascertain the accuracy of dense plasma resistivity calcula-
tions using the Ziman theory. There is presently a consider-
able demand for dense plasma resistivities particularly in
connection with recent femtosecond pulsed laser experi-
ments @9# as well as other laser plasma experiments@10#.

Thus to test the Ziman theory the detailed comparisons of
experiment to theory, which included effects not accounted
for previously were carried out for liquid metals, as well as
the comparisons with very recently obtained plasma resistiv-
ities in Cu and Al. The conclusions drawn from these com-
parisons are presented in Sec. V.

II. LIQUID-METAL RESISTIVITIES

The extended Ziman formula as derived by Evans, Green-
wood, and Lloyd@5# was used here in calculating the resis-
tivity of the liquid transition metals. This formula in its
simple form is given by
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Hereq is the momentum transferred from the incident elec-
tron with energyE, f (E) is the electron fermi distribution,r
is the ion density, andu is the scattering angle.

The three basic elements in the calculation are the number
of conducting electrons per ionz̄, the scattering phase shifts
d, and the ion structure factorS(q). TheINFERNOcalculation
gives the number of bound electronsNb . Let n(E) denote
the sum of the free electrons up to energyE,N0(E), plus the
resonance electrons up to this energy.n(E) is given whereE
is positive by

n~E!5N0~E!1
2

p (
l

~2l11!d l~E!1NMS~E!, ~3!

wheredl is the phase shift of thel partial wave.NMS is the
multiple scattering contribution to the density of states
~DOS! in the formalism of the Lloyd theory which together
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with the second term, the Friedel term, should give the cor-
rect DOS@11,12#. In the case of Cu the sum of these terms
was taken from the experiment@13#, while in the case of Fe
they were based on calculations@14#. The sum of both the
terms was assumed equal to the number of particles under
the resonance as calculated by theINFERNO code. Thus the
NMS term only alters the shape of the DOS curve here, com-
pared to the calculation without theNMS term.

The chemical potential is obtained from whereZ0 is the
nuclear charge from

Z02Nb5E n~E! f ~E!dE. ~4!

The improvement in the present calculations over previ-
ous ones lies in the inclusion of theNMS term in Eq.~1!. This
influences the chemical potential and thus the ratio of free to
resonance electrons, see Table I. A point worth mentioning,
which was not accounted for here, is the exact location of the
lowest energy of the free electrons relative to the jellium
continuum. This topic has been discussed by Ziman@15# in
connection with liquid metals, where it is pointed out that
this energy is influenced by the surrounding ions.

The scattering phase shifts are obtained from theINFERNO

calculation. The basic assumption of the Ziman model is the
muffin tin picture where the electrons are scattered by the
core potentials. Thus the use of theINFERNO model for cal-
culating the phase shifts is open to some question since what
is needed is the scattering at the core boundary by the core
potential and not at the Wigner-Seitz~WS! radius as in
INFERNO. The ion structure factors are taken from the experi-
ment @16#, for the liquid metals near melting, while for the
higher temperature calculations the ion structure factor was
obtained from the HNC model@8#.

In Table I~a! are presented results of our calculations for
liquid metals near melting together with experimental data as
well as results of other calculations. MS denotes our results
with the more accurate DOS, i.e., with theNMS term in Eq.
~3!, while noMS is our calculation using Eq.~1! just with the

Friedel term.Z~MS! and Z~noMS! denote the number of
conducting electrons in both these cases.

The resistivities obtained for Cu and Ni are in very good
agreement with the experiment, while for Al the experimen-
tal resistivity is of the order of twice the one calculated here.
The calculated results for Fe and Mn are about four times
larger than the experimental result, the results of Rinker are
in fair agreement with ours for the latter two elements, while
Esposito, Ehrenreich, and Gelatt@11# obtain an even higher
calculated result for Fe. Our results and those of Rinker@1#
should be similar but not exactly the same, since although
both calculations are essentially the same they differ in de-
tails such as the values of the potentials which are evaluated
somewhat differently. The reason for the large difference in
the calculated resistivity of Ni is not clear.

The effect of using the more accurate DOS is seen to
significantly decrease the resistivity of Fe by bringing about
an increase in the number of conduction electrons. For Cu
this effect does not alter the result significantly.

Another point also connected to multiple scattering which
could bring the calculated results, especially for Fe and Mn,
in closer agreement with the experiment, relates to the prob-
lem of scattering from a cluster as opposed to scattering from
a single scatterer as assumed in the calculations presented
here. Scattering from a cluster could be represented by gen-
eralized phase shifts, which decrease and broadens the scat-
tering integral* 0

2kdq q3S(q)s(q) as a function of energy
@17,18#. The scattering cross section of Fe is maximum at the
resonance energy, at whichf 8(E) also attains its maximum,
see Fig. 1~a!. Smearing the resonance will lower the scatter-
ing cross section and hence the resistivity. Such an explana-
tion has been put forward by Fresard and Germond@17# in
connection with the resistivities of transition liquid metals.
This effect should be more pronounced in Fe than in Cu; in
the latter the resonance energy is considerably lower than the
maximum in f 8(E), see Fig. 1~b!.

In Table I~b! we compare our calculated results to the
experimental data of Gathers for Cu@6# and to those of Hix-

TABLE I. Table of liquid-metal resistivities, resistivities inmV cm. MS denotes the inclusion of the
‘‘multiple scattering’’ term in the DOS. ~a! Near melting.~b! Comparisons with higher temperature cases;
see text for source of experimental data.

~a!

r ~cgs! T ~eV! expt. @1# Rinker @1# espos @9# noMS MS Z~noMS! Z~MS!

Mn 6.43 0.131 174 640 732 1.38
Fe 7.05 0.156 139 423 1130 571 491 1.24 1.34
Ni 7.85 0.149 85 440 74 76 1.07
Cu 7.96 0.117 21 45 41 19.8 18 1.34 1.42
Al 2.70 0.060 25 10.9 3.0

~b!

r ~cgs! T ~eV! expt. noMS Z~noMS! S(q) t~sec!

Cu 7.96 0.117 21 19.8 1.34 exp 1.7310215

8.00 0.117 19.1 24.5 1.34 HNC 1.8310215

6.42 0.302 32.3 8.8 1.20 HNC 1.5310215

Ni 7.85 0.149 85 76 1.07 exp 4.8310216

7.71 0.164 97.3 103 1.04 HNC 4.4310216

6.57 0.319 117 70.6 0.891 HNC 5.0310216
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son, Winkler, and Hodgdon for Ni@7#. Structure factors were
obtained from the HNC model since experimental data are
not available at these higher temperatures. It is of interest to
compare resistivity results using experimental structure fac-
tors to those calculated by means of the HNC model at the
lower temperatures. In the latter case the liquid metal is as-
sumed to be composed of a plasma of ions and electrons with
the number of free electrons calculated as described above
and given in the fifth column of Table I~b!. For Cu a com-
parison is made for densities of 7.96 g/cm3 and 8.0 g/cm3

both at the temperature of 0.117 eV. The latter case is
adopted from the experimental data of Gathers@6# and is
essentially the same as the former case which is given in
Table I~a!. In Fig. 2~a! we compare the experimentalS(q) at
a density of 7.96 g/cm3 to the calculatedS(q) at 8.0 g/cm3

and the agreement is satisfactory~it could be significantly
improved if the ‘‘bridge function’’ was accounted for@19#!.
The calculated resistivities, using the same phase shifts, dif-
fer, however, by about 25%, indicating the sensitivity of the
resistivity on the structure factor. A similar comparison was
carried out for Ni and in Fig. 2~b! we compare the structure
factors which are seen to differ substantially as does the cal-
culated resistivity. Table I~b! affords a comparison of calcu-

lated resistivities of Cu and Ni as a function of temperature.
The results are presented without multiple scattering effects
in the DOS since neither the experimental nor theoretical
densities of states are available for the cases studied in Table
I~b!. Table I~b! also includes in the last column the collision
timest for each of the cases treated. The experimental resis-
tivity of Cu at the higher temperature is seen to increase by
69% compared to the lower temperature value while the cal-
culation based on the HNC structure factors is observed to
decrease drastically. For Ni the experimental value increases
by 20% while the calculated result decreases again this time
by about 30%.

Although we do not reproduce the trend of the experimen-
tal data for Ni the results still agree within less than a factor
of 2. In Cu the experimental resistivity is almost four times
higher than that calculated here, and again the trend of the
experimental data as a function of temperature is opposite to
the calculated result. Although the number of calculated con-
ducting electrons decreases with expansion and heating, a
factor which should cause an increase in the calculated resis-
tivity, our calculation yields a decrease in the resistivity, es-
pecially very significant in the case of Cu. This discrepancy
should be investigated in more detail in the future.

FIG. 1. Scattering integral as a function of energy; also plotted
are f 8(E) and the density of states of the resonance.~a! For Fe,~b!
for Cu.

FIG. 2. Comparison of the structure factorS(q), between ex-
perimental data as given by Waseda@14# and results of the HNC
calculations, for liquid Cu in~a! and liquid Ni in ~b!.
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III. MULTIPLE SCATTERING EXPANSION
OF THE T MATRIX EFFECT ON RESISTIVITY

In this section we investigate the effect of the second and
third order terms of the multiple scattering expansion on the
resistivity result of liquid Cu obtained above where only the
first order term as given by Eq.~1! was used.

Following a suggestion by Ziman@20# and elaborated on
by Dreirachet al. @21#, what is needed in Eq.~1! is the total
T matrix of the system. Calculations using theT matrix were
carried out by Dunleavy and Jones@22# for liquid transition
metals and by Perrot and Dharma-wardana@23# for hydrogen
plasma as well as Fe at 5 keV. We therefore write

R5\/3p z̄2e2r̄E
0

`

de f 8~e!E
0

2k

dq q3T2. ~5!

The T matrix can be written@24–26# in the form of the
multiple scattering expansion, when the initial scattering
commences at ioni ,

T5(
i
t i1(

i j
t iG0t j ,1(

i jk
t iG0t jG0tk , ~6!

where the first term represents simple scattering by particlei .
The second term represents double scattering, first by par-
ticle i then propagation of the scattered particle toj where it
is scattered by the latter. Thenth term representsn succes-
sive scatterings, in all cases the incident momentum isk0,
while the outgoing momentum isk.

It can be shown that by invoking the approximation that
the surroundings of the scatterers are identical~the quasic-
rystalline approximation QCA! the resistivity is now

R5\/3p z̄2e2p̄E
0

`

de f 8~e!E
0

2k

dq

3q3S~q!Ut11(
j
t1G0t j1(

jk
t1G0t jG0tk1•••U2.

~7!

As noted above the widely used extended Ziman formula
employs only the first term of this series. It is our purpose to
examine the influence of the second and third terms on the
calculated resistivity of liquid metals, near melting, which
bear strongd resonances. Our example here is Cu at
T50.117 keV andr57.96 g/cm3. As mentioned above three
of the basic ingredients needed for the resistivity calculation
were obtained from the self-consistent average atom model
~INFERNO! @4#. These are the phase shifts of the electron ion
scattering, the number of conducting electrons, and the free
electron energy distribution. The ion structure factor were
obtained from the experimental data@16#.

As a first step in ascertaining the influence of the second
term of Eq.~2! on the scattering, the positions of the neigh-
boring scatterers are determined. In the present calculations
the influence of the nearest neighbors only, defined as all the
ions comprising the first peak of the radial distribution func-
tion g(r ) or first coordination shell, were considered.g(r )
was taken from Waseda@16# and the number of scatterers
thus obtained is ten. The distribution of the scatterers about

the central ions was obtained by means of the Monte Carlo
technique by sampling,g(r )r 2dr for the radial coordinate,
while the cos~u! andf were sampled with equal probability.
In the equal probability scatterer configurations thus gener-
ated, no correlations were assumed between the ions of the
configuration.

The second term of the series given in Eq.~2! is evaluated
as in Messiah@25#. The propagatorG0 betweenr 1 and r 2 is
given by @24#

G05exp~ ikpur 12r 2u!/~4pur 12r 2u!,

wherekp5uk0uRW /R, RW is the vector connecting the central
ion to the given scatterer.

The term to be determined for each of the ten neighboring
ions each denoted by the indexj is obtained by assuming the
core radius to be small relative toR. The result is

^kut iG0t j uk0&521/~4pR!^kutiukp&^kputjuk0&. ~8!

Summing these terms over all ten scatterers in a given
nearest neighbor configuration and inserting the result into
Eq. ~7!, gives the resistivity which includes the second term
of the multiple scattering series of Eq.~6!.

The results of resistivities which include the second term
of the series, obtained from five different configurations of
the ten scatterers, are presented in Table II. The resistivity
with no multiple scattering corrections obtained here is 19.8
mV cm ~the experimental result is 21mV cm!, while the re-
sistivity averaged over the five configuration in Table II is
21.1mV cm. Thus inserting the second term of the multiple
scattering series therefore causes an average increase of only
7% in the calculated resistivity.

The third term in the multiple scattering series of Eq.~3!
is derived in the same manner as the second term. As above
the incident momentum isk0 while the final momentum isk.
The two intermediate momenta arekp andkp1 and are given
by the positions of the second and third scatterers. Thus the
third term of the series is

^kut iG0t jG0tkuk0&5
^kut i ukp1&^kp1ut j ukp&^kputkuk0&

~4p!2R1R2
. ~9!

The summation overkp is over the nearest ten scatterers
to the central ion. For each of these scatterers the third scat-
tering event is assumed to take place at the positions of the
ten nearest atoms to that given scatterer. The positions of the
latter are obtained by means of a molecular dynamics simu-
lation which gives the correctg(r ) curve for liquid Cu. We

TABLE II. Effects of second order term in the multiple scatter-
ing series on the resistivity of liquid Cu. The resistivities are in
units ofmV cm, and the result for the single site approximation here
is 19.8.

Configuration with 2nd order term

1 21.4
3 20.8
5 21.2
7 21.4
9 20.8

1902 54ERAN NARDI



note that the position of the first scatterers are those used
above which were sampled from theg(r ) curve. The dis-
tance between the central ion and first scatterer isR1 while
that between the second and third scatterer isR2. The effect
of the third term on the resistivity in the case studied here
was found to be less than 1%.

The small increase of 7% in the calculated resistivity is
not nearly enough to account for the large difference be-
tween the calculation and the experiment in the cases of Fe
and Mn. It is logical to assume that corrections of similar
magnitude would be obtained for Fe, Ni, and Mn. As noted
above Dunleavy and Jones@22# performed multiple scatter-
ing calculations of the resistivities of liquid transition metals.
These authors calculate the completeT matrix also within
the QCA, generalizing the solution given by Schwartz and
Ehrenreich@26#. They observe a decrease in the resistivity of
liquid Cu by the introduction of multiple scattering whereas
we here observe an increase in this value. The reason for this
difference could be that our calculation does not include all
the aspects of theT matrix. Although possibly less accurate,
the calculations performed here clearly bring out the relative
contribution of the terms in the multiple scattering series.

IV. RESISTIVITY OF Cu AND Al PLASMA

In this section we compare the results of our calculations
to the recently obtained experimental conductivities of
DeSilva and Kunze@3# for dense Cu plasma. As in Sec. II
which dealt with liquid metals we again calculate the resis-
tivity of the Cu plasma using Eq.~1!. Resistivities are calcu-
lated here at a density of 1 g/cm3 from 21 000 K to 30 000 K
and at 1.5 g/cm3 from 15 000 K to 30 000 K. The smaller
temperature range at the lower density is because the
INFERNO calculation fails to converge at temperatures less
than 21 000 K due to the relatively low density involved,
while at 1.5 g/cm3 the calculation ceases to converge below
15 000 K. The number of conducting electrons is derived as
above using Eq.~3! @without theNMS(E) term# while the
phase shifts are also derived from theINFERNO model. The
structure factor was obtained by means of the HNC model
@8#, in the case of the Cu plasma studied here the inclusion of
screening in the HNC calculation is of no significance.

In Table III are presented the results of resistivity calcu-
lations for Cu at a density of 1.5 g/cm3 and in the tempera-
ture range from 15 000 K up to 30 000 K.Z is the number of
free electrons as obtained from theINFERNO calculations,

which brings into account thep resonance for the cases stud-
ied in Table III. In Table III we note the increase in the
number of conducting electrons with temperature, similar to
the results obtained from the Saha model presented in the
fourth column of the table.

By using the resistivities calculated as described above,
the mean free path~mfp! of the conduction electrons based
on the simple Drude formula@27# were obtained. These val-
ues are considerably lower than the distance between the
scatterers. The calculated resistivities in Table III therefore
were recalculated assuming that the electron mfp is equal to
the distance between the scatterers. A similar procedure was
carried out by Dharma-wardana and Perrot@28# for alumi-
num plasma. Conductivities thus obtained are plotted in Fig.
3 in units of Siemens/meter as a function of temperature, for
densities of 1 and 1.5 g/ms together with the recent experi-
mental results of DeSilva and Kunze@3# and with the calcu-
lations of Rinker@1# and of Lee and More@2# at 1 gm/cm3;
both these calculations make noad hoc assumption on a
number of conducting electrons. At temperatures greater
than 15 000 K the trend of our results is similar to Rinker but
considerably higher. This trend of rising conductivity as a
function of temperature is due to the increase of conducting
electrons with temperature above 15 000 K. The experimen-
tal data of DeSilva and Kunze@3#, however, are of the op-
posite trend with the conductivity decreasing as a function of
temperature as well as being about an order of magnitude
higher than our calculated results near 15 K. The very low
number of conduction electrons could cast doubt on the ap-
plicability of the Ziman theory for the Cu plasma studied
here. We should at this point make note of the recent results
of Benageet al. @29# who measured the resistivity of poly-
urethane at 1.265 g/cm3 between the temperatures of 25–30
eV. In these measurements the resistivity was seen to de-
crease with temperature.

A similar calculation was carried out for the resistivity of

FIG. 3. Conductivity of a Cu plasma at density 1 g/cm3 as a
function of temperature. The squares and full line are the experi-
mental data of DeSilva and Kunze, whileR and LM denote the
results of Rinker and Lee and More, respectively. Our calculated
results are given by the full points and squares and are for 1.5 g/cm3

and 1.0 g/cm3, respectively.

TABLE III. Resistivity of Cu at 1.5 g/cm3. ResistivityV cm
designates the resistivity assuming the number of conduction elec-
trons isZ. Z is the number of conductors according to the calcula-
tions of this paper, ZSAHA is the ionization state obtained from the
Saha equation. Resistivities are not corrected in this table for the
mfp, see text.

Temp Z Resistivity ~V cm! ZSAHA

15 000 0.09 10.231023 0.07
17 000 0.13 6.431023 0.08
22 000 0.26 1.931023 0.15
25 000 0.35 1.431023 0.20
30 000 0.44 1.131023 0.29
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aluminum as a function of temperature at the natural density.
The results of the calculations were compared to resistivities
obtained from self-reflectivity experiments of an intense
femto-second laser pulse@9#, see Fig. 4. It is to be noted that
the high temperature aluminum plasma exhibits ad reso-
nance. As in the case of the transition liquid metals discussed
in Sec. II these electrons are assumed not to conduct. Our
calculations indicate that ‘‘resistivity saturation’’ discussed
above for Cu plasma, is not reached here for the aluminum
plasma in contradiction to Ref.@28#.

Although our results follow the trend of the experimental
data as a function of temperature they are between a factor of
3 to 4 less than experiment. The temperatures in Fig. 4 are
quoted from Ref.@9# and could be somewhat in error. An
analysis of the experiment of Ref.@9# was carried out by Ng
et al. @10# who showed that the region of laser target inter-
action extends over a range of plasma temperatures and den-
sities. This renders as somewhat inaccurate the direct corre-
spondence between laser intensity and temperature as quoted
in Fig. 4.

V. DISCUSSION

In this paper we have applied the extended Ziman formula
to calculating resistivities of transition metals and Al in the
liquid state as well as for a dense Cu and Al plasma, using
the INFERNOmodel for calculating phase shifts and the num-
ber of conducting electrons and by using the experimental
structure factors near melting. Very good agreement between
our calculations and experimental results were obtained for
Cu and Ni near melting, while for Fe and Mn our resistivities
were about four times higher than experiment. On the whole
it could be stated that our results are in somewhat better
agreement with experiment than those of Rinker@1# and Es-
posito, Ehrenreich, and Gelatt@11#.

A major point in the present paper is the inclusion of
higher order terms in the simple extended Ziman formula.
Improved DOS were inserted into the calculation for Cu and
Fe, which in the latter case brought about a lowering in the
number of conducting electrons, thereby causing a decrease
of 16% in the calculated Fe resistivity. In Sec. III the effect
of the second and third order terms of the multiple scattering
expansion of theT matrix on the calculated value of the

resistivity was investigated. It was found that for liquid Cu
the second order term caused an increase in the resistivity of
7%, while the influence of the third order term was found to
be less than 1%. This serves as an indication that at liquid-
metal conditions the second and third order terms are essen-
tially insignificant. These terms perhaps could be influential
at extremely high densities.

The calculations dealing with the heated and expanded Ni
and Cu liquid metals give resistivities which decrease upon
heating and expansion, while the experiments indicate the
opposite trend. In the case of Cu the calculated result is four
times lower than experiment while for Ni the calculation
yields a resistivity 1.6 times higher than experiment. These
calculations on these and other liquid metals should be pur-
sued in the future.

In the dense Cu plasma case the basic trend of our resis-
tivities as a function of plasma temperature at given tempera-
ture is opposite to that of the experimental data and in gen-
eral the agreement between our calculated results and the
experimental data of DeSilva and Kunze@3# is poor. Our
results agree within a factor of 3 to those of Rinker with the
same basic trend as to be expected. In the case of the alumi-
num plasma the difference between our calculated results
and those of the experiment is between a factor of 3 to 4, but
the basic trend in the resistivity as function of temperature is
reproduced.

Very recently Yuan, Sun, and Zheng@30# carried out ex-
tensive plasma and liquid-metal resistivity calculations very
like ours also by using the extended Ziman theory. In a man-
ner similar to the INFERNO calculation carried out by us,
these authors also employed a detailed average atom calcu-
lation and also made use of the HNC model for the ion-ion
correlations. We should, however, point out that our results
and those of Yuan, Sun, and Zheng differ with regard to the
Fe and Cu liquid metal resistivities. The ratio of the Fe to Cu
resistivity is at least an order of magnitude in our calcula-
tions as well as those of Rinker@1# and of Esposito, Ehren-
reich, and Gelatt@11#, with the experimental ratio 6.6. Yuan,
Sun, and Zheng on the other hand obtain that both these
resistivities are essentially the same. The reason for the
higher Fe resistivity is discussed by us in Sec. II and elabo-
rated in Fig. 1. As pointed out below it is our intention to
pursue this topic further. The results of Yuan, Sun, and
Zheng@30# for the Al plasma are, however, in better agree-
ment with experiment than ours as given in Fig. 4.

The basic question addressed in this paper, as mentioned
in Sec. I, deals with the accuracy, especially for plasmas, of
the resistivity calculations of the Ziman theory, using the
INFERNO atom in the cell model as well as the HNC model
for the structure factors. One important reason for this lies in
the recent demand for accurate dense plasma resistivity cal-
culations.

Thus with the exception of the Cu plasma the calcula-
tional procedure outlined in the present paper agrees with
experimental data up to within about a factor of 4. The cal-
culated liquid transition metal resistivities are up to a factor
of 4 higher than the experiment, while for Al the calculated
resistivities are lower by between three to four times the
experimental results for both the plasma and liquid metal
cases.

Future work should include the effect of the generalized

FIG. 4. Resistivity of aluminum plasma as a function of electron
temperature; points are experimental data from the femtosecond
laser experiments@9#. The squares denote the results of our calcu-
lations.
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scattering phase shifts@17,18# which in the cases of Fe and
Mn could bring about a significant reduction in the calcu-
lated resistivities. Also as mentioned above additional calcu-
lations should be made on expanded and heated liquid met-
als. Finally, more experimental dense plasma resistivity data
would be very beneficial for testing plasma resistivity calcu-

lations such as those outlined in this paper.
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